
Acta Cryst. (2008). A64, 123–134 doi:10.1107/S0108767307046028 123

feature articles

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 28 June 2007

Accepted 19 September 2007

# 2008 International Union of Crystallography

Printed in Singapore – all rights reserved

The charge flipping algorithm
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This paper summarizes the current state of charge flipping, a recently developed

algorithm of ab initio structure determination. Its operation is based on the

perturbation of large plateaus of low electron density but not directly on

atomicity. Such a working principle radically differs from that of classical direct

methods and offers complementary applications. The list of successful structure-

solution cases includes periodic and aperiodic crystals using single-crystal and

powder diffraction data measured with X-ray and neutron radiation. Apart from

counting applications, the paper mainly deals with algorithmic issues: it

describes and compares new variants of the iteration scheme, helps to identify

and improve solutions, discusses the required data and the use of known

information. Finally, it tries to foretell the future of such an alternative among

well established direct methods.

1. Introduction

Charge flipping (CF) is a deceptively simple structure-deter-

mination algorithm that solves the phase problem with much

weaker assumptions than classical direct methods. As such, its

conceptual importance and potential in crystallographic

teaching was clear from the start (Oszlányi & Süto��, 2004,

2005), while, considering the power and widespread use of

existing direct methods, it seemed less likely that charge flip-

ping could make a practical impact. We were fortunately

wrong in this respect. Just three years after the first publica-

tion, and thanks to the quick and creative response of the

crystallographic community, numerous applications of CF

have already emerged, user programs are being created and

there is still progress in improving the basic algorithm. It now

seems timely to critically summarize the current state of this

quickly developing field.

The paper deals with all aspects of the structure-solution

process. It does this in a tutorial style with a particular

emphasis on algorithmic issues. x2 gives a brief introduction to

the phase problem and dual-space approaches for its solution.

In x3, this is followed by a precise description of the basic

charge flipping algorithm and its special properties. Then in x4

we introduce some figures of merit that were found useful to

identify the convergence in the otherwise unconditional

iteration process. In x5, we discuss different ways of choosing

the only parameter of the algorithm, and show a clean-up

procedure that works after the ab initio solution and before a

true refinement. xx6 and 7 introduce significant improvements

of the basic algorithm first in reciprocal space and then in real

space – some of these are published here for the first time. x8

discusses the correct treatment of unobserved data and shar-

pening of density maps with observed data. This is also the

place where the results of all previous improvements are

compiled in a table for a carefully selected example. x9

explains that the ab initio algorithm can also be utilized in

those situations when some preliminary structural information

is available. x10 is perhaps the most awaited part of the paper

that counts successful applications and lists various user

programs. In the concluding section, limitations and future

prospects of the charge flipping method are discussed.

2. The phase problem and dual-space approaches

In the simplest case, the electron density of a crystal is faith-

fully represented in reciprocal space by a complete set of

complex structure factors: FðhÞ ¼ jFðhÞj exp½i’ðhÞ�. If these

could be directly measured, the act of structure solution would

be nothing but an inverse Fourier transform. Unfortunately, a

simple diffraction experiment provides information only on

the magnitudes of structure factors but cannot determine the

phases. This leads to the famous phase problem of crystal-

lography, with additional complications of limited resolution,

missing reflections, unreliable intensities etc. The main diffi-

culty of this problem is that any phase set in the high-

dimensional space is compatible with the measured data, and

only additional information on the electron density can select

the correct solution. Mathematical techniques that do this job

are called direct methods.

Classical direct methods utilize the constraints of positivity,

atomicity and chemical composition that lead to statistical

phase relations of structure factors (Hauptman & Karle, 1953;

Karle & Hauptman, 1956; Woolfson, 1987; Giacovazzo, 1998).

While classical direct methods, in their original form, work

entirely in reciprocal space, there are other variants that

switch back and forth between real and reciprocal spaces. The

advantage of these dual-space methods is that they offer

remarkable freedom of imposing constraints in each of the



spaces. The disadvantage is that this cannot be done simulta-

neously: satisfying the constraint in one space may often

violate the constraint in the other. The usual solution is some

iterative scheme that is computationally expensive and was

not practical before the widespread use of the fast Fourier

transform (FFT) (Cooley & Tukey, 1965; Barrett & Zwick,

1971; Frigo & Johnson, 2005). Therefore, dual-space pro-

cedures were initially used for improving partial solutions like

phase correction (Hoppe & Gassmann, 1968) and various

density-modification methods in protein crystallography

(Wang, 1985; Abrahams & Leslie, 1996; Zhang et al., 2001) –

their ab initio application is more recent. Today we can be sure

that all current programs of structure determination contain

smaller or larger sections of various dual-space procedures

and differ significantly from the pure classical scheme (Miller

et al., 1993; Sheldrick, 1998; Burla et al., 2005; Yao et al., 2006).

It is also fair to pay tribute to another field. The first ab

initio dual-space method that works without statistical phase

relations comes from optics, where the Gerchberg–Saxton–

Fienup algorithm (Gerchberg & Saxton, 1972; Fienup, 1982) is

the standard phase-retrieval tool of non-periodic objects. This

method requires that (i) preliminary information on the size

and shape of the support of the object is available, and (ii) the

support is surrounded by a known region of zero scattering

density. If the surrounding zero region is large enough, the

continuous Fourier transform can be measured at a sufficiently

fine sampling to fulfil the Nyquist criterion, and, if the shape of

the support is known with sufficient accuracy, an iterative

scheme can reconstruct any general object. Note that this is

also the mathematical background of recent progress in single-

particle imaging (Sayre, 2002). In contrast to non-periodic

objects, the scattering density of a periodic crystal is always

undersampled (Sayre, 1952) and, therefore, the above scheme

is not applicable. Fortunately, crystal structures are very

special objects, which occupy only a small fraction of space

with high density values and leave a large fraction of space for

nearly zero density (see Fig. 1). Given high-resolution data, we

may attempt to find and use these zero plateaus. Charge

flipping is a method that follows this plan.

3. The basic charge flipping algorithm

The simplest Fourier cycle (shown in Fig. 2) comprises four

steps: (i) a real-space modification of the electron density, (ii)

a Fourier transform to reciprocal space, (iii) a reciprocal-space

modification of calculated structure factors and (iv) an inverse

Fourier transform back to real space. The use of the FFT

requires that the continuous electron density is also sampled

at regular grid points. With observed data within a resolution

sphere of radius jhjmax ¼ 1=dmin, the necessary grid spacing is

�r � dmin=2.

The charge flipping algorithm is a special variant of the

above scheme. To make the name-giving real-space modifi-

cation plausible, Fig. 3 shows the electron-density samples

(pixels) sorted in ascending order for two structures calculated

at different resolutions. These plots illustrate that at high

resolution a small number of pixels with large values carry the

majority of structural information. The information content of

the many pixels scattered around zero is much less, it is

enough to know that their values are confined in a narrow

band. If we combine the constraint of positivity with a weak

perturbation of these nearly zero plateaus, we might get an

algorithm that simultaneously explores the phase space and

decreases its effective dimensionality. The choice of CF is to

reverse the sign of small electron density. This introduces

small discontinuities while keeping the standard deviation of

the whole density distribution practically constant.
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Figure 1
Left: The standard Lena image as a non-periodic object of a square support, surrounded by a region of zero density. Middle: A much simpler object
where zero density is also present inside the confining square. Right: The same molecular object without the surrounding region of known zero density.
This corresponds to the unit cell of a periodic crystal.

Figure 2
Steps of the simplest Fourier cycle.



Here we recall the precise steps of initialization + one

iteration cycle:

0. The algorithm is initialized by selecting a random phase

set f’ðhÞg which satisfies Friedel’s law. The structure factors

are created as FðhÞ ¼ FobsðhÞ exp½i’ðhÞ�, where FobsðhÞ are the

observed moduli. Unobserved moduli and Fð0Þ are set to zero.

The starting electron density �ðrÞ is obtained by an inverse

FFT.

1. Given a positive threshold �, the electron density �ðrÞ is

divided into two parts, � ¼ �1 þ �2 with �1 ¼ � if � � � and

�2 ¼ � if �< �. The electron density gðrÞ is generated as

g ¼ �1 � �2 by flipping the low-density region.

2. Temporary structure factors GðhÞ are calculated by the

FFT. Thus we arrive at a parallelepiped-shaped volume that

contains both observed reflections within the resolution

sphere and unobserved reflections outside it.

3. Structure factors FðhÞ are constructed by using the

calculated phases of GðhÞ and replacing the moduli by FobsðhÞ.

Fð0Þ ¼ Gð0Þ is accepted unchanged and FðhÞ outside the

resolution sphere are reset to zero.

4. Finally, the structure factors FðhÞ are inverted to obtain

the new electron density �ðrÞ. The next iteration cycle is

started from step 1.

Evolution of a dynamical system is a good analogue of the

above process, the electron density (or phase set) can be

considered as a point of high-dimensional space that is driven

by the perturbations and constraints along a complicated path.

A successful run has three characteristic parts: an initial

transient, a long stagnation period before and the stable state

after the convergence. The transient usually takes only

� 10 cycles, and is needed to reach a subspace of zero plateaus

with positive peaks. In the stagnation period, a more detailed

exploration of this subspace follows. Although the CF algor-

ithm is truly deterministic, it is also chaotic, the actual path is

extremely sensitive to small changes of the starting point or of

�. When the path reaches the region of convergence, the

solution occurs quickly, often 10–100 cycles are sufficient for

completion. After this, the solution is remarkably stable, the

same algorithm that led to the solution is unable to kick it out

from this state.

There are several attractive properties of the CF algorithm.

The first is its extreme simplicity and easy implementation.

The second is its truly ab initio character. The electron density

is represented on a grid but the concept of atoms is not

acknowledged during the solution. Therefore, CF makes no

use of atom types, chemical composition or even the total

charge of the unit cell. There is no need for utilizing sym-

metries either, all structures may be allowed to float freely in

the space group P1. Electron density can continuously evolve

up to the solution, where simple peak picking identifies atoms

– the chemical composition and space-group symmetry can be

determined afterwards. The principle of such an algorithm

differs a great deal from that of both classical direct methods

and global optimization, it works without statistical phase

relations or any cost function. Therefore, charge flipping is

complementary to other direct methods, it can work well in

troublesome situations such as unknown chemical composi-

tion, ambiguous space groups, the presence of pseudosym-

metry or disorder.

4. Figures of merit

The iteration process is unconditional and could continue

forever. The practical question is when to stop it, preferably in

an automatic way and after recognizing that the solution has

been found. The choice of some good figures of merit (FOM)

is discussed below.

In our first paper, the convergence was indicated by a sharp

drop in the following quantities: Fð0Þ corresponding to the

total density, the usual R factor, and the average phase change.

These are examples of three main types of FOM that char-

acterize (i) the electron density itself, (ii) the fit to the

observed data, and (iii) the unobserved phases. Here we

introduce some variants of (i) and (ii) and suggest all of them

are followed as a vector. This can be useful when we do not

have high-resolution Fobs data, and the usual drop in the R

factor becomes too small or even absent.

So here is a list of some useful FOM’s:

R ¼
P��Fobs=

P
Fobs � Fcalc=

P
Fcalc

��;

where Fcalc ¼ jGj;

CC ¼ hxyi=ðhx2ihy2iÞ1=2;

where x ¼ Fobs � hFobsi and y ¼ Fcalc � hFcalci;

Fð0Þ ¼ total charge;
P
�3 ¼ peakiness;

RH ¼
P
jsortð�Þ � sortð�refÞj

�P
jsortð�refÞj:
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Figure 3
Electron-density samples (in e Å�3 units) calculated on a 0.4 Å grid and
sorted in ascending order. Left and right columns correspond to a light-
atom structure with composition C160N2O10 and to a heavy-atom
structure with composition C48O4P4S4Cl32Nb8 (Irngartinger et al., 1999;
Stumpf et al., 1999). Top and bottom rows come from ideal Fobs data at
dmin ¼ 0:8 and 1.2 Å resolutions. It can be clearly seen that large electron
density is concentrated in a small fraction of space – this behaviour is
stronger with higher-resolution data and when heavy atoms are present.



The R factor and the correlation coefficient (CC) char-

acterize the fit of calculated and observed moduli, and with the

usual definition both are insensitive to the correct scaling of

moduli. At convergence, the R factor drops, and the correla-

tion coefficient increases. Usually, both show enough contrast

but, with low-resolution data, normalized structure factors

(E’s) or neutron diffraction data, it can happen that one or

both become insensitive to the solution.

It is remarkable that convergence is indicated by some

global properties of the density map without considering the

data. Of these, Fð0Þ is our current favourite. It works well even

when the R factor and CC fail, and its only annoying property

is that it continuously creeps downward before the significant

drop at convergence. This is in contrast with the R factor or

CC which quickly become constant but, even so, it is always

worth following Fð0Þ. The other useful property of the map is

its ‘peakiness’. This quantity originates from Cochran’s work

(Cochran, 1952) and was actively used in the phasing process

by Stanley (1979, 1986). Its passive use as a FOM is suggested

here. Convergence is indicated by its sharp increase and a

characteristic maximum can be observed before the solution

slightly degrades. While peakiness is an interesting quantity

related to triplets, its utility seems to be limited to high-reso-

lution data. The third property of the density map requires a

reference histogram (Lunin, 1988; Zhang & Main, 1990), so

this is a slight departure from the pure ab initio approach.

(Even so, a sufficiently good reference histogram can be

calculated after creating an artificial structure with similar

composition and randomly positioned atoms at a minimum

distance from each other.) Again, the histogram could be used

in an active or passive way. While the phasing power of a

histogram is weak, the match of calculated and reference

histograms RH is a very good new FOM. Convergence is

indicated by its sudden drop and a characteristic minimum can

be observed before the solution settles. A particularly useful

property of RH is that it shows enough contrast also at lower

resolutions.

5. Selection of d and finishing a solution

The basic CF algorithm has a single parameter: the threshold �.
Its optimal choice is a delicate problem and is important

because it determines (i) the computational cost of a solution

and (ii) the quality of the resulting map.

The computational cost of a solution at a given parameter

value (or algorithm variant) can be measured only on the basis

of statistics. For this we need a number of runs (N) that start

from different random phase sets and are allowed to continue

for a maximum number of cycles (M). Thus, the length of the

ith run is xi � M. If convergence can be detected by some of

the previous FOM’s, then the iteration can be stopped at

xi <M. With n> 0 successful runs, we calculate

�xxS ¼

PN
i¼1 xi

n
� NM

which expresses directly the average number of cycles spent

for a single solution.

Once the efficiency of a given � parameter can be measured,

we are ready to search for its optimum value. Because peaks of

a density map are very much dependent on the grid size,

absolute scale and thermal parameters, the choice of � is a

delicate problem, also influenced by the chemical composition

and the type of the structure. In the simplest case, � is kept

constant for the complete run and the fraction of pixels that

are flipped (� ¼ N�< �=Ngrid) may vary in each cycle. In

practice, � varies strongly only in the initial transient, it is

nearly constant during the stagnation period, and increases

slightly at the point of convergence. A suggested variant was

to change the roles of � and �, keeping � constant and allowing

� to vary (Wu et al., 2004). Technically, this also required the

sorting of pixels in each cycle which is a time-consuming step,

but sorting can be replaced by a much faster multipass binning

process (Coelho, 2007a). The main advantage of constant � is

that its choice is not dependent on the correct scaling of

observed and calculated structure factors. It also yields a

converged density of slightly better quality because the frac-

tion of pixels that are flipped does not increase at the point of

convergence, as with a constant �. Otherwise, to find the

optimal � or to find the optimal � takes just as much effort and,

once found, the cost of a single solution is also the same.

Here we suggest a new parametrization of � that is more

physical than previous approaches. The threshold is now

expressed as � ¼ k�, where k is a fixed number and
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Figure 4
A successful run of the charge flipping algorithm for a typical organic
structure using high-resolution data. Subplots show some global
quantities (calculated in the g state) as a function of the iteration cycle.
First row: the R factor and the correlation coefficient. Second row: the
total charge and the peakiness (both normalized by their ideal values).
Third row: the match of the histogram and the standard deviation of the
electron-density map (e Å�3 units). The first five quantities are good
figures of merit that clearly indicate the convergence, while � with its
nearly constant value is important for selecting the algorithm’s threshold
parameter.



� ¼ ðh�2i � h�i2Þ1=2 is the standard deviation of the electron-

density map. � expresses the spread of density values in a

single number and is constant at a given resolution due to

Parseval’s theorem. The standard deviation seems to be a

good basis for selecting � because (i) it makes k independent

of the correct scaling of structure factors and (ii) it puts a

margin of reliability on the final density map. When � is

recalculated in the g state of each iteration cycle (see Fig. 4), it

is still nearly constant throughout the process and is remark-

ably insensitive to the choice of k. This behaviour was care-

fully checked for a large number of crystal structures,

including those which contain many heavy atoms and a few

light atoms in the same structure. In all cases, the optimal

value of the new parameter was found to be in a narrow range

k = 1.0–1.2, and the cost of a solution was the same as if it were

calculated with the optimal constant � or constant �. The

positive correlation between � and � is intuitively obvious.

Higher-resolution data or the presence of heavy atoms

increase the positive electron-density values while zero or

nearly zero values are always present. The result is a larger

spread of electron density that also requires a larger � to

achieve the same perturbation. The cause of the approximate

coincidence of � and the optimal � is less clear and an

explanation should consider the particular shape of the

density distribution. We do not say that the problem of

selecting the optimal parameter a priori is completely

resolved. Small structures are readily solved with any k in the

1.0–1.2 range, but with increasing size and complexity the

useful range quickly becomes narrower. One symptomatic

treatment, suggested by Coelho (2007b), is to periodically

ramp the parameter within the expected limits. This works

well but to solve protein-sized structures we still need a real

theory of selecting �.
The quality of the solution is also related to the threshold

parameter. The fastest convergence usually requires a rela-

tively large � and the perturbation of many pixels in the low-

density region. These pixels contribute significantly to the

structure factors and their flipping is the cause of a limit cycle

behaviour after convergence. However, these pixels should

not be considered as part of the solution, and can be deleted

after the convergence. Thus the correct ‘clean-up’ procedure

of the solution is to switch from charge flipping to ten cycles of

low-density elimination as was first introduced in the program

SUPERFLIP (Palatinus & Chapuis, 2007). Our experience

shows that even a single cycle suffices and better quality

histograms are obtained if we do not decrease �. The recipe is:

keep or increase � ¼ k� used for the solution, set �< � to zero

and complete the Fourier cycle by prescribing Fobs. For

demonstration, we selected an organometallic compound

(Florke & Haupt, 1990) (376 non-H atoms per 7394 Å3, space

group P21=n) that in addition to light atoms (C, O) contains

both heavy (P, Cl) and very heavy atoms (I, Re) in the same

structure. Previously, this was a typical problem case for the

CF algorithm because the large standard deviation of the

electron-density map required a large threshold parameter for

the solution, and thus could not provide the position of the
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Figure 5
Electron-density map of the unit cell for an organometallic example described in the text. Columns from left to right: the reference structure (blue), the
ab initio solution by charge flipping using the threshold parameter � ¼ 1:0� (red), the final state after one step of the clean-up procedure using the
parameter � ¼ 1:5� (also red). Top and bottom rows are isosurface plots with levels 1:0� and 0:2�. In all cases, heavy atoms can be identified already
above the level of one standard deviation. Light atoms appear only after the clean-up procedure and only at the 0:2� level.



light atoms. The clean-up procedure solves this problem,

convincing illustrations are shown in Fig. 5.

The efficiency of the above one-cycle clean-up can be given

a simple explanation. Let us follow the strongest reflections

FðhÞ after convergence sets in. Then the Fourier components

F1 and F2 corresponding to �1 and �2 become orthogonal to

each other in the complex plane, see Fig. 4 of Oszlányi & Süto��
(2004). From this instant on, a continued iteration enters a

two-cycle switching between F1 þ F2 and F1 � F2. By cutting

off �2, we keep only F1 which, after adjusting its modulus to

Fobs, is our best approximation to the ideal F.

6. Improvements in reciprocal space

A simple Fourier cycle is susceptible to stagnation and we

must be prepared to break it in some way. This requires a fine

balance of constraints and weak perturbations, both of which

can be implemented in real or reciprocal space. In the basic CF

algorithm, the prescription of Fobs data is a pure modulus

constraint, while the charge flipping step is a mix of the

positivity constraint and of a low density perturbation. A large

number of algorithm variants can be constructed by adding (or

removing) constraints and by introducing new perturbations.

Naturally, we want only those variants that increase the effi-

ciency of the algorithm.

The first improvement in reciprocal space was found acci-

dentally. To check the algorithm’s tolerance to missing data,

we replaced weak reflections by zeros and observed that

convergence actually became faster (Oszlányi & Süto��, 2004).

The fraction of reflections considered weak was � = 10–50% of

all data within the resolution sphere. The speed-up was

significant (a factor of 2–4 for simple structures), and the final

R factor increased without an obvious degradation in the

quality of the reconstructed electron density. This first try

(called ‘weak = 0’ for short) suggested that weak reflections

can be utilized in a similar way to low electron density, their

perturbation improves the exploration of phase space and

decreases the dimensionality of the problem. Subsequently, we

have found many variants of reciprocal-space perturbations. A

particularly successful one is casually called the �=2 version of

CF (Oszlányi & Süto��, 2005). This algorithm has three par-

ameters: the threshold �, the fraction of reflections � that are

considered weak, and a phase shift �’. In step 3 of the

iteration cycle, weak reflections are treated in a special way:

their calculated phases are shifted by the constant �’ and

their calculated moduli are accepted unchanged. (Beware,

phases of Friedel pairs must be shifted by ��’!) An

exhaustive search for the best three parameters is not realistic.

It is usually sufficient to try � ¼ 20 or 40%, check a narrow

range above �’ ¼ �=2 and search for the usual �. The speed-

up with good parameters can be quite significant, for large

structures the number of iteration cycles spent for a solution

often decreases by a factor of 50–100. The range of useful �
also becomes broader, and there is an increased chance that a

solution is found after a long stagnation period. Note that the

perturbation of weak reflections assumes that there is enough

data, so the utility of these algorithms decreases with lower

resolution.

There is one more improvement in reciprocal space

that is worth special attention. It is essentially an Fo þ�F

Fourier synthesis (Main, 1979) that relaxes the modulus

constraint in step 3 of the iteration cycle. The operation

FðhÞ ¼ ½2FobsðhÞ � jGðhÞj� exp½i’GðhÞ� gives the mirror image

of each calculated structure factor relative to its projection on

the circle of radius Fobs, and is a clear-cut case of positive

feedback with a known reference point. For ab initio work, this

step was first used as part of a very different scheme (Drendel

et al., 1995), and its reinvestigation was suggested to us by

Thomas Weber. There are several advantages of the simplest

Fo þ�F version: (i) it does not discard any reflections, (ii) it

does not add any new parameter to basic CF, and (iii) it

converges at least as fast as the �=2 version. However, for

larger structures, it is better to limit the reciprocal-space

perturbation by a new parameter W. As shown in Fig. 6, the

Fo þ�F step is applied only when GðhÞ falls within the ring

FobsðhÞ �W< jGðhÞj<FobsðhÞ þW, otherwise the mirror

operation is limited by the opposite edge of the ring. This is

made plausible by our observation that a solution with optimal

� always leads to a uniform misfit of calculated and observed

structure-factor moduli. The optimal value of the normalized

parameter w ¼ W=maxðFobsÞ is usually larger than 0.25.

7. Improvements in real space

Charge flipping is a local perturbation of low density that does

not act at points where the value is above the threshold.

Unfortunately, it can happen that at the beginning of the

process high positive densities emerge incoherently, and it is

practically impossible to remove them by flipping only �< �.
These are the runs that end without success and just increase
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Figure 6
Fo þ�F relaxation of the modulus constraint in the charge flipping
algorithm. A selected structure factor before and after this step
[GðhÞ ! FðhÞ] is plotted by empty and red symbols in the complex
plane for a few possible cases. The measured FobsðhÞ defines the radius of
the (bold) circle that is the centre of the mirror operation and the
parameter W defines a (shaded) ring that limits the change of the
modulus.



the statistical cost of a single solution. As shown previously,

various reciprocal-space perturbations are able to break this

stagnation. The reason is that they act non-locally in real

space, also in points of large (and possibly false) density. It is

instructive to see whether the same result can be achieved by a

modification that acts purely in real space.

We have tested many variants of the basic algorithm and

found that it is much more difficult to find an improvement in

real space than in reciprocal space. For the low-density part,

we cannot find anything nearly as good as charge flipping.

Low-density elimination (LDE) (Shiono & Woolfson, 1992)

was considered as a particularly attractive alternative because

it was the first method to utilize a small positive threshold �
and was already found useful to complete a CF solution. To

make sure that we really probe the ab initio phasing power of

its name-giving real-space part, we used high-resolution data

(dmin ¼ 0:8 Å) and kept the simplest modulus constraint. It

was found that LDE is extremely susceptible to stagnation,

requires a � parameter about twice as large as CF, and solves

only very simple structures. Later, the same authors dropped

the original version and opted for continuous functions

(Refaat & Woolfson, 1993; Foadi et al., 2000; Matsugaki &

Shiono, 2001) that delete �< 0 and amplify �> 0. Then there

is no threshold and the modification must be considered as a

whole. While we do not question the utility of these pro-

cedures within their native schemes, we still find that their

phasing power is weak – at least as part of the simplest Fourier

cycle. In this case, creating small discontinuities of low density

seems to be a more efficient way for the exploration of phase

space.

After many attempts, we have discovered a purely real-

space modification that gives a significant improvement of the

basic CF algorithm. This is called ‘flip-mem’ because the

improvement comes at the expense of requiring a short-term

memory of the iteration process. In step 1 of the ðnþ 1Þth

cycle, the usual sign reversal is performed for �n <�. For

�n >�, the density modification is calculated as gnþ1 ¼

�n þ �ð�n � �n�1Þ, where the useful range of the � parameter

is 0.5–1.0. Thus, gnþ1 is outside the interval formed by �n�1

and �n, and always on the side of �n. This is another example

of a positive feedback, different from both simple perturba-

tions and from the negative feedback used by Fienup’s

algorithm. As we shall see in the table, this purely real space

modification performs comparably well to the reciprocal-

space �=2 and Fo þ�F variants. The advantage of CF

with real-space memory is that it yields better quality histo-

grams.

The last real-space modification listed here does not yield a

speed-up for structure solution using X-ray data. Instead, it

removes the positivity constraint of charge flipping. In step 1

of the iteration cycle, the g ¼ �� sign reversal is applied only

for ��<�< þ �, and leaves both large positive and large

negative values unchanged. This is called the band flipping

version of the algorithm which helps to reconstruct negative

scattering densities. Its utility in structure solution of neutron

diffraction data is discussed in detail in our recent publication

(Oszlányi & Süto��, 2007).

8. Data resolution and sharpening

Charge flipping is based on the physical assumption that the

unit cell is mostly empty, i.e. large electron density is

concentrated in a small fraction of the space. To expose this

property, the data must extend to sufficiently high resolution

and the thermal vibrations must be small. In a favourable

case, complete and accurate FobsðhÞ are available up to

dmin ¼ 0:8 Å, the global thermal parameter can be corrected

to B � 0, and the electron density is represented on a grid with

�r ¼ 0:2–0.4 Å spacing. While the efficiency of the CF

algorithm could really benefit from data of ultra-high resolu-

tion, this is seldom available. Instead, we must often work with

significantly fewer data; decreasing the resolution to 1.0, 1.2 or

1.5 Å means that only a 51, 30 or 15% fraction of the standard

dmin ¼ 0:8 Å reflection sphere is measured. At any resolution,

(i) we must decide how to handle unobserved reflections, (ii)

we must choose between natural and normalized structure

factors, and (iii) it may become necessary to replace missing

data by other pieces of known information. Points (i) and (ii)

are discussed here, point (iii) in the next section.

Let us recall how the basic algorithm implements the

modulus constraint. It replaces jGðhÞj by FobsðhÞ for observed

reflections, it resets FðhÞ ¼ 0 for unobserved reflections

outside the resolution sphere, and accepts Fð0Þ ¼ Gð0Þ as

calculated.

Fð0Þ is the sum of the total scattering density and deter-

mines the zero level of the flip. As such, its selection is more of

a question of the algorithm than of data. Fð0Þ is usually

initialized at zero, quickly reaches stagnation and drops at the

convergence. The main role of freely changing Fð0Þ is not to

find the true value of the total charge but to find the middle of

the band that can be flipped without significantly changing the

distribution of pixels. While we still consider unconstrained

Fð0Þ the most useful variant, there is no clear consensus

among developers. For example, Palatinus first fixed it at zero

for the complete iteration process (Palatinus, 2004), later used

it only for refinement, but his first version is preferred by

Coelho when using the parameter � and phase constraints

(Coelho, 2007b). The choice of handling unobserved data

outside the resolution sphere is more straightforward. With a

proper match of resolution and grid spacing (reciprocal-space

sphere contained by a parallelepiped), the number of unob-

served reflections is large, at least as many as the number of

observed reflections. These cannot be allowed to change freely

because the iteration would lock in a false state without

enough constraints. Prescribing upper limits and/or adding a

thin unobserved shell is a possible choice, but the least

problematic is to limit the search space and reset all d< dmin

reflections to zero in each iteration cycle. There are many

other types of missing data within the resolution sphere and

the maximum-entropy optimized Patterson map (Palatinus et

al., 2007) gives a good estimate for these moduli. Extending

data to higher than experimental resolution is a different

problem that badly needs additional structural information.

Considering that most direct methods operate with

normalized structure factors (E’s instead of F’s), it is a natural
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question whether their use leads to faster convergence also

with the charge flipping algorithm. The answer is yes and we

can easily see why. Let us assume that the structure contains

only a single type of atom with scattering factor f ðhÞ. If

structure-factor moduli are replaced by FobsðhÞ=f ðhÞ then we

get the point-atom representation of the same structure. Peaks

of the electron-density map become higher and concentrated

into a smaller number of pixels – this is called sharpening, and

means a smaller search space for the algorithm. Unfortunately,

artificial negative density – which always comes from resolu-

tion cut-off – is also enhanced with sharpening. At each charge

flipping cycle, large negative samples must change their sign,

which is unnecessary and can be harmful. The two effects of

using E’s are always coupled. Many tests indicate that with

data at high resolution the positive effect dominates and the

only harm is the smaller drop of the R factor at convergence.

The standard definition of normalized structure factors is

EðhÞ ¼ FobsðhÞ=½
P

j f 2
j ðhÞ�

1=2. While charge flipping can solve

many structures without them, their use can significantly speed

up convergence for large structures. Apart from the original

definition, we have also experimented with two other variants

of sharpening. The first one can be thought of as the n!1

limit of the generalized EnðhÞ ¼ FobsðhÞ=½
P

j f n
j ðhÞ�

1=n expres-

sion. This corresponds to the scaling FobsðhÞ=fHðhÞ, where

fHðhÞ is the scattering factor of the heaviest atom found in the

structure. The second one corresponds to neutron-like scat-

tering factors, where fjðhÞ is replaced by the constant fjð0Þ for

every atom. This is a hypothetical case that requires recalcu-

lated synthetic data and cannot be used as a correction for real

data. Still, it is instructive to see how it behaves because using

fjð0Þ means more sharpening than what comes from the stan-

dard definition. Tests of several different structures can be

summarized by the following statements: (i) for light-atom

structures all three versions of sharpening give similar results;

(ii) for structures containing heavy atoms sharpening by fHðhÞ

gives just as good results as standard E’s, while ideal point

atoms are much worse; (iii) so, independently of the structure

type, knowing the heaviest atom can give sufficient sharpening

even if the chemical composition is not available. Dividing by

fHðhÞ enhances the contrast between heavy and light atoms, by

sharpening the former and damping the latter, it decreases the

relative contribution of many atoms.

The most attractive property of the use of E’s is that all

previous improvements of the algorithm are compatible with

it. Any improvement obtained with F’s can be combined with

E’s to give an even better performance. A fairly complete set

of results is compiled in Table 1 for a carefully selected organic

structure (Alexander et al., 2002) [219 non-H atoms per unit

cell, space group P1, a hard-to-solve example of our earlier

paper (Oszlányi & Süto��, 2005)]. This contains the cost of a

single ab initio solution using all previously discussed

(suggested) algorithm variants, with ideal F or E data, and at

0.8 and 1.0 Å resolution. The statistics of 100–400 runs were

calculated at each parameter, and each run was continued for

a maximum of 20000 cycles. The threshold parameter of

different algorithms was carefully optimized and only the best

results were included in Table 1. The choice of �’ ¼ �=2 is

not optimal, better results were obtained with values higher by

10–20	.

The most remarkable observation is that the efficiency of

closely related algorithms differs so much – at least by four

orders of magnitude. The other observation is less surprising.

The type of data and the resolution strongly and generally

affect the efficiency: E’s are much better than F’s and 0.8 Å

resolution is better than 1.0 Å. Otherwise, these algorithm

variants can often perform comparably well after some opti-

mization: the cost of a solution may differ only by a factor of

2–5. Probably, it is more important to pick one of the

suggested algorithms and spend some time finding a good

parameter. At this point, there is no simple recipe for choosing

parameters, mainly because the practical measure of success is

not the number of solutions per unit time once the best

parameter is found but the total time spent on finding a

reasonable parameter plus the first solution. Experience in this

respect is being accumulated. A good parameter must bring

sufficiently strong perturbation to explore the phase space but

not too strong, otherwise the iteration will miss the solution.

We have also tried more complicated combinations of algor-

ithm variants. It seems that no significant speed-up can be

achieved in this way, the sum of useful perturbations is

somehow limited by the relatively weak constraints used so

far. We have probably reached the point where it is appro-

priate to add more constraints that may allow stronger

perturbations and a further speed-up of convergence. A final

word of caution: the speed of finding a solution is not every-

thing. The quality of the electron-density map is just as

important and should always be improved by switching back

to natural Fobs, adding a few iteration cycles of the basic

algorithm, plus the final clean-up procedure.
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Table 1
The average number of iterations required for a single solution using
various modifications of the charge flipping algorithm.

Columns: resolution and type of data. Rows: algorithm variants and the
number of iteration cycles required for a single solution at the given data. The
test structure and algorithm variants are described in the text. Parameters: � is
the fraction of reflections considered weak, � is the amplification factor of the
positive feedback and w is the relative width of the reciprocal ring where
Fobs þ�F is applied.

F at 0.8 Å E at 0.8 Å F at 1.0 Å E at 1.0 Å

Basic charge flipping >8
 106 32000 >8
 106 600000

Weak = 0, � = 0.20 8
 106 11000 >8
 106 210000
Weak = 0, � = 0.40 4
 106 1700 >8
 106 32000
Weak = 0, � = 0.60 3
 106 500 8
 106 5400

�’ ¼ �=2, � = 0.20 190000 1500 1
 106 10000
�’ ¼ �=2, � = 0.40 140000 1300 790000 2800
�’ ¼ �=2, � = 0.60 210000 4400 8
 106 2000

Fobs þ�F, w = 0.25 59000 750 190000 3400
Fobs þ�F, w = 0.50 42000 1600 120000 900
Fobs þ�F, w =1 48000 2600 130000 650

flip-mem, � = 0.6 1
 106 1400 8
 106 10000
flip-mem, � = 0.8 220000 2500 4
 106 3400
flip-mem, � = 1.0 40000 9700 460000 3100



9. Use of known information

Charge flipping is a flexible tool that can be used in different

ways and at different stages of the structure-solution process.

It either operates in a truly ab initio manner without relying on

preliminary information or can be applied to complete a

partially known structure/phase set, it is able to check the

stability of a solution but it can also be adapted to work as an

ingredient of other dual-space schemes. In previous publica-

tions, we mostly emphasized the ab initio nature of the

algorithm and gave only hints of its practical utility for

structure completion. Here this option is discussed in more

detail.

Known structural information might be diverse. To list a few

possibilities: atomicity, atom types, chemical composition,

histogram of electron density, symmetry elements, full space-

group symmetry, connectivity of a molecular structure,

common polyhedra of an extended solid, the positions of

heavy atoms, the positions of some fragments of the structure,

two-dimensional projections of the correct electron density,

low-resolution phases, structures of related compounds,

statistical phase relations etc. and any mix of these. Whether

known information is required at all depends on both the

complexity of the structure and the amount of available data.

With simple structures containing heavy atoms, structure

determination may already succeed with powder data of

average quality, while for large and complex structures even

high-resolution single-crystal data may be insufficient. Even

in those cases when required and available, not all types of

known structural information can be utilized easily and

combined with others. A good part of the crystallographic

literature deals with the question of how to use various

pieces of known information in an optimal way. Here we

pick only two simple constructs that can easily be imple-

mented.

The first one assumes that some other method has already

located a fraction of the structure with reasonable accuracy,

e.g. the position of heavy atoms, an oriented fragment or a

typical layer. Then the corresponding electron density can be

taken as a good starting point in real space that replaces the

usual random-phase initialization of the CF algorithm. After-

wards, the original iteration process can proceed without any

modification. This means that no attempt is made to fix the

model, it either evaporates or develops into the complete

structure within a small number (10–100) of cycles. For

structure completion, the threshold parameter � must be set

slightly smaller than what is required for an ab initio solution.

In the case of failure, multiple runs may also be attempted but

then some noise must be added to the starting density so that

individual runs differ. As might be expected, with a larger

fraction of the correct electron density, the chance of a

successful structure completion increases. However, using

high-resolution data it can already succeed with as little as 0.5–

1.0% of the total density if the known part is carried by heavy

atoms, or with 2–4% if carried by light-atom fragments. To

give an impression of the efficiency of structure completion by

charge flipping: vitamin B12, rubredoxin and lysozyme can be

solved with 0.8–1.2 Å data and starting from the known

positions of heavy atoms.

The second construct works in reciprocal space and requires

the knowledge of both the modulus and phase for a subset of

reflections. These are used not only for initialization but are

kept as constraints all through the iteration process. So this

second construct is more strict than the first one and can also

succeed with a smaller amount of known information. Here we

mention an important aspect of algorithm implementation.

Our program used for development has a large degree of

freedom of deciding how individual reflections are treated. It

can assign separate ‘how-to-use’ codes for each reflection that

determines in each cycle whether the reflection is reset to zero,

allowed to change freely, its modulus is constrained, both its

modulus + phase are constrained, its phase is shifted by �’, it

is used in Fo þ�F mode, it follows phase constraints, or any

other option. Reflection groups may also be created and be

given the same code. The groups can be created on the basis of

the measured magnitude, the resolution shell, symmetry

equivalents, available phase information etc. The program

might even modify its strategy and change the corresponding

codes after a number of iteration cycles. A practical case

where the simplest strategy works is that of classical phase

extension: let us assume that both modulus and phase is

known for d> 3 Å, only the modulus is known for

d ¼ 1:5–3 Å and there is no measured data below d ¼ 1:5 Å.

In other words, 15% of the standard 0.8 Å sphere has known

moduli, and only 1.9% has known phases. With reasonable

phase error (uniform �’ ¼ ½�45	;þ45	�), phase extension

from 3.0 to 1.5 Å seems to be an easy exercise for the previous

examples of vitamin B12, rubredoxin and lysozyme.

Not all pieces of structural information can be used as

simply as in the previous constructs, i.e. only at the start or

perpetually in each iteration cycle. Often it is better to

prescribe constraints (symmetry, atomicity, histogram) only

partially and/or only once in every nth iteration cycle, where

n ¼ 10–50. Also, there exist other pieces of known informa-

tion (distance, connectivity, polyhedra) that cannot be

accommodated in the charge flipping scheme so far. To find

the most general and most efficient options of using known

information certainly needs further investigation.

10. Applications and user programs

In this section, we briefly discuss the real-life problems that

charge flipping is suited for, and the user programs where the

algorithm can be put into action. We emphasize that most of

the results presented here were achieved by others, a small

enthusiastic part of the crystallographic community, who

picked up the method early and developed it in a creative way.

For periodic single crystals measured with X-radiation, the

utility of the CF algorithm was clear at the time of the initial

discovery (Oszlányi & Süto��, 2004). The first demonstration

using experimental data followed quickly (Wu et al., 2004),

proving the initial claim that the CF algorithm is reasonably

tolerant to imperfections of data. However, the heavy-atom

structures used in the first demonstration led to high noise
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levels of the electron-density map and it was necessary to

average multiple runs to improve the map and identify light

atoms. This is a good general technique but today we know

that the clean-up procedure would do an even better job at the

end of a single run, and the option of using multiple runs

would still be open. Since then, several unknown structures

have successfully been solved by charge flipping (Meffre et al.,

2007; Richeter et al., 2007; van der Lee & Astier, 2007;

Wardell, Low & Glidewell, 2007; Wardell, Wardell et al., 2007)

but, as current direct-methods programs perform so well,

using the CF method remained mostly a curiosity.

A more challenging example of structure solution using

single-crystal data came as an awkward case of pseudosym-

metry (Oszlányi et al., 2006): a large non-centrosymmetric

structure where six molecules are stacked on top of each other

with an approximate translational symmetry of every second

molecule. This nearly regular distribution of atoms is rather

unfavourable for classical direct methods because statistical

phase relations rely on the random distribution of atomic

positions. In contrast, the same atomic arrangement is a big

advantage for charge flipping because it amplifies a few

Fourier components and decreases the search space. Since the

first demonstration, some even larger and otherwise prob-

lematic structures were solved by the CF algorithm with

surprising ease (Evans, 2007). It is now certain that categories

of easy- and hard-to-solve structures can be very different for

classical direct methods and CF, and the solution of pseudo-

symmetric structures will be a main application where charge

flipping can complement other direct methods.

Whatever its advantages, for periodic crystals charge flip-

ping may be considered ‘just another method’ of structure

determination. The situation for the field of aperiodic crystals

is quite different because it cannot utilize three-dimensional

atomicity and has long needed a general and comprehensible

method of structure determination. It was Palatinus who

realized that, when charge flipping develops extended zero

plateaus of the electron density and finds the atoms, it does

this without relying on the concept of three-dimensional

atomicity. Furthermore, the CF algorithm contains no three-

dimensional specific part, it can work in any dimension. So he

extended the method to higher dimensions and succesfully

solved modulated structures directly in superspace (Palatinus,

2004). The first demonstration already included examples that

rank among the most complex modulated structures described

so far. Since then, several unknown structures have also been

solved successfully (Zúñiga et al., 2006; Palatinus et al., 2006).

A further important development in superspace applications

is the first structure solution of a decagonal quasicrystal with

five-dimensional charge flipping (Katrych et al., 2007). While

the superspace descriptions of modulated structures and

quasicrystals differ, it seems that charge flipping is generally

applicable to both structure types.

When single crystals are not available, structure solution

may be attempted using powder diffraction data. Here

reflection overlap is a special problem that usually requires the

repartitioning of measured intensities. Often the choice of the

space group is also uncertain, so a method that works in P1 has

clear advantages. The first demonstration of powder charge

flipping (pCF) came from the Arizona group (Wu et al., 2006),

they included a Le Bail-like repartitioning of intensities in

each iteration cycle and solved some relatively simple struc-

tures. A different repartitioning scheme based on histogram

matching was introduced by Baerlocher, McCusker & Pal-

atinus (2007) that significantly increased the complexity of

known structures that can be solved by pCF. Later, the same

group solved an 864 atom zeolite catalyst structure that had

resisted all previous attempts for a decade (Baerlocher,

Gramm et al., 2007). For this spectacular result, it was neces-

sary to combine powder data with other pieces of known

information: two-dimensional projections of the electron

density measured by high-resolution electron microscopy. It is

now clear that charge flipping will be a useful method for

solving structures from high-resolution powder diffraction

data. General improvements of the CF algorithm with low-

resolution data and specific improvements of the pCF repar-

titioning scheme are still required.

Finally, we list some user programs where the CF algorithm

is already implemented. These are: BayMEM, SUPERFLIP,

PLATON’s FLIPPER module, TOPAS Academic and

Bruker-AXS TOPAS. The program BayMEM (van Smaalen et

al., 2003) was the host of the first implementation used for

solving aperiodic structures. Later, Palatinus and Chapuis

created a dedicated program SUPERFLIP (Palatinus &

Chapuis, 2007) that works with arbitrary dimensions of elec-

tron density and data. It also includes a powder option, has

strong symmetry analysis capabilities and good connections to

other superspace programs like JANA2000 and BayMEM

(Petřı́ček et al., 2000; van Smaalen et al., 2003). The third

implementation is the module named FLIPPER in Ton Spek’s

well known PLATON suite (Spek, 2003) that is designed for

more automatic work. Its special functionality is that by using

PLATON’s other tools it gradually determines the space

group and atom types as the iteration process progresses. The

latest implementation is TOPAS Academic (Coelho, 2007a)

and the corresponding version of TOPAS (Bruker-AXS,

2007). Their common kernel is a programmable program

written for periodic structures and with many new variants of

the algorithm. Perhaps the most significant improvement

developed here is the combination of CF with the tangent

formula (Coelho, 2007b). This new constraint allows stronger

perturbations that lead to a remarkable speed-up of conver-

gence. It is true for all the listed user programs that they are

being developed quickly and their current status can be

checked only in the user manual. Also, their authors are

responsive both to error reports and to requests to include

further functionality.

11. Concluding remarks

In this paper, we have attempted to survey a still extending

horizon of improvements and applications of the charge

flipping algorithm. Finally, we would like to stress that, in

spite of the spectacular speed-up that can be reached by some

algorithm variants, the heart of the method remains the
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name-giving real-space transformation. When we write in

more than one place about its ‘surprising’ simplicity, we admit

our own lack of understanding of it beyond the level of

intuition. Deeper insight might come from a still missing

mathematical proof of convergence of the algorithm.

It has been known for a long time that, in the case of

sufficiently high resolution data, scattering intensities contain

more than enough information to reproduce the electron

density or, equivalently, the missing phases. Atomic scattering

factors can be described with nine parameters. Adding three

coordinates and, in the worst case, six anisotropic thermal

parameters, we have 18 parameters per atom. With a few

hundred atoms per unit cell, the electron density is then coded

by several thousand real parameters, while at 0.8 Å resolution

the number of available Fourier moduli is roughly ten times as

much. An algebraic extraction of the electron density from

nothing but the known scattering intensities is hopeless for

systems of this size; the only imaginable way is via an iterative

algorithm.

Charge flipping appears to be an algorithm that can do this

job. It successfully combines a relaxed positivity constraint

(�>��) with a perturbation of low densities (sign change for

�< �). Its strength is the decomposition of the electron density

in the sum of two parts, �1 and �2. When the corresponding

Fourier transform F1 þ F2 is changed into F1 � F2, the direc-

tion of the complex vectors changes considerably, making an

efficient exploration of the space of phases possible. It is to be

mentioned that charge flipping is not a projection, not even a

relaxed over-projection (Stark & Yang, 1998). Its fixed points,

the real N-dimensional vectors (N here is the number of

pixels) with components either 0 or � � form a non-convex

disconnected manifold. Application of charge flipping to other

than fixed points may increase the distance to this manifold

(see Fig. 7) while (relaxed) projections always decrease the

distance.

There are some typical ways to improve the basic algorithm.

The earliest among them was the special treatment of weak

reflections, either by resetting them to zero or by letting them

freely evolve and applying a �=2 phase shift to them. Both

introduce a perturbation in the algorithm, associated with a

relaxation of the modulus constraint on weak reflections. As

we understand it, they accelerate convergence defensively, not

by driving the system towards a solution but by preventing it

settling down in a trap. This is in contrast with the two other

accelerators introduced in this paper, the real-space flip-mem

and the reciprocal-space Fo þ�F. The first one uses a one-

step memory while the second works without memory, and

both realize a positive feedback. Because Fo þ�F concerns

the data, it can be considered as a perturbation or relaxation

of the modulus constraint. However, it can also be viewed as a

pure real-space intervention which replaces �n by 2�n � gn

everywhere and prior to charge flipping in the next cycle. As

such, it resembles the � ¼ 1 version of flip-mem, and it is no

surprise that the two variants perform similarly, cf. Table 1.

Note also their difference arising from a different intuition

behind them, and that Fo þ�F performs distinctly better – it

would be hard to tell why.

The above improvements do not affect the ab initio char-

acter of the CF method. A major improvement with only a

slight deviation from being ab initio comes from the use of

normalized structure factors. Table 1 shows convincingly its

superiority compared with the use of unnormalized structure

factors. One may ask how far in resolution and system size it is

possible to go with the CF algorithm and the use of E’s. Based

on preliminary computations not reported here, we think that

light-atom structures of near-protein-size should be possible to

handle up to 1.0–1.2 Å resolution, while for smaller heavy-

atom structures the resolution limit might be at 1.5 Å. By

application of the tangent formula or other phase relations

and constraint of the algorithm with known structural infor-

mation, these limits can be pushed even farther. We hope to

assist and perhaps contribute to these future developments of

the charge flipping algorithm.

This research was supported by OTKA grant 67980K.
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